L’objet de cet article est d’analyser et de comprendre les enjeux de la thèse de Louis Couturat – intitulée De l’infini mathématique (1896) – à partir de ses sources mathématiques et historiques (Cantor et Dedekind). Au-delà de la seule évaluation du statut de l’infini mathématique, il ouvre à un questionnement plus large : 1° sur l’essence de la philosophie ; 2° sur son rapport aux sciences. – 1. La philosophie comme réflexion métascientifique ; 2. Exposé critique de la généralisation arithmétique du nombre (Tannery, Kronecker) ; 3. Exposé critique de la genèse « naturelle » ou algébrique des concepts de nombre (Dedekind) ; 4. Fondation rationnelle des extensions de l’ensemble des nombres : la référence à la notion de grandeur continue ; 5. La genèse rationnelle des concepts mathématiques ; 6. Du primat de l’intuition rationnelle au logicisme.
F. F.