Les chapitres qui composent ce livre reproduisent le contenu de conférences données par Hermann Weyl à l’Université de Princeton en février 1951. Publié pour la première fois en 1952 et traduit en français en 1964, l’ouvrage a pour objet d’étude le concept géométrique de symétrie. Il en présente les grandes formes : la symétrie bilatérale (chapitre I), les symétries de translation et de rotation et les symétries associées (chapitre II), la symétrie ornementale ou symétrie cristalline (chapitre III). Cette progression permet à l’auteur de parvenir à l’idée mathématique générale de symétrie (chapitre IV) à la base de toutes ces formes particulières : à savoir celle de l’invariance d’une configuration d’éléments pour un groupe de transformations automorphiques – l’automorphisme désignant l’opération par laquelle une figure est transformée en une autre et à l’issue de laquelle toutes deux deviennent indiscernables lorsque chacune est considérée en elle-même, en raison de leur identité de structure. – Appendice A : « Détermination de tous les groupes finis de rotations propres dans l’espace à trois dimensions » ; Appendice B : « Inclusion des rotations impropres » ; Remerciements, p. 150-151 ; Table des matières, p. 153.
F. F.