Logo Sips
Accueil

Abécédaire

Recherche

Intranet

Contact

Système d'information en philosophie des sciences

Logo Sips
ImprimerEnvoyer le lien

ARTICLE

Foundation of gauge fields theories on the principle of scale relativity

  • Pages : 141 à 172
  •  
  • Support : Document imprimé
  • Edition : Seconde édition
  •  
  • URL : Lien externe
  •  
  • Date de création : 23-01-2012
  • Dernière mise à jour : 24-04-2015

Résumé :

Anglais

This article contains : 1. Introduction ; 2. Statement of the problem ; 3. The theory of scale relativity : summary ; 3.1 Principle of scale relativity ; 3.2 Galilean scale-relativity ; 3.3 Special scale-relativity ; 3.4 Relativistic quantum mechanics: Klein-Gordon equation ; 3.5 Dirac equation ; 3.6 Covariant tool : complex velocity operator ; 4. Classical electrodynamics in scale relativity ; 4.1 Scale-covariant derivative ; 4.2 Gauge invariance ; 4.3 Definition of the electric charge ; 4.4 Derivation of Lorentz force from geodesics equation ; 4.4.1 Generalized invariant proper time ; 4.4.2 Covariant derivative of a vector ; 4.4.3 Geodesics equation from covariance principle ; 4.4.4 Geodesics equation from energy equation ; 4.5 Link with Weyl-Dirac theory ; 5. Quantum electrodynamics ; 5.1 Introduction ; 5.2 QED-covariant derivative ; 5.3 Electromagnetic KG equation from a geodesics eqution ; 5.4 Nature of the electric charge (quantum theory) ; 5.5 Charge quantization and mass-coupling relations ; 6. Conclusion and future prospect . – References, 172-173. F. F.

 

Résumé :

Anglais

This article contains : 1. Introduction ; 2. Statement of the problem ; 3. The theory of scale relativity : summary ; 3.1 Principle of scale relativity ; 3.2 Galilean scale-relativity ; 3.3 Special scale-relativity ; 3.4 Relativistic quantum mechanics: Klein-Gordon equation ; 3.5 Dirac equation ; 3.6 Covariant tool : complex velocity operator ; 4. Classical electrodynamics in scale relativity ; 4.1 Scale-covariant derivative ; 4.2 Gauge invariance ; 4.3 Definition of the electric charge ; 4.4 Derivation of Lorentz force from geodesics equation ; 4.4.1 Generalized invariant proper time ; 4.4.2 Covariant derivative of a vector ; 4.4.3 Geodesics equation from covariance principle ; 4.4.4 Geodesics equation from energy equation ; 4.5 Link with Weyl-Dirac theory ; 5. Quantum electrodynamics ; 5.1 Introduction ; 5.2 QED-covariant derivative ; 5.3 Electromagnetic KG equation from a geodesics eqution ; 5.4 Nature of the electric charge (quantum theory) ; 5.5 Charge quantization and mass-coupling relations ; 6. Conclusion and future prospect . – References, 172-173. F. F.

 
Haut de pageRetour à la page précédente