1.1.1. Votre requête est guidée par la suggestion des mots-clés déjà enregistrés dans la base de données (auto-complétion)
1.1.2. Pour combiner des mots-clés dans une requête, plusieurs possibilités se présentent :
1) Opérateur ET : il doit être entré avec le symbole "&" :
2) Opérateur OU : il doit être entré avec le symbole "+" :
3) Opérateur SAUF : il doit être entré avec le symbole "-" :
1.2.1. Cliquez sur une lettre :
1.2.2. Vous avez la possibilité de faire tourner la boule des mots-clés associés au terme choisi :
1.2.3. Vous avez aussi la possibilité de cliquer sur un mot-clé :
1.2.4. Une fois un mot cliqué, un widget apparaît indiquant le nombre de notices indexées par le mot-clé sélectionné :
1.2.5. En cliquant sur le widget, vous faites apparaître la liste des références bibliographiques indexées par le mot-clé que vous avez sélectionné :
Vous avez la possibilité de faire défiler cette liste de références bibliographiques
1.2.6. Après avoir cliqué sur un résultat de requête, la notice associée à la référence bibliographique sélectionnée s’affiche :
1.2.7. Vous avez alors la possibilité de faire défiler la notice pour la consulter et lire son contenu
1.3.1. Cliquez sur le bouton accueil :
1.3.2. Vous avez la possibilité de choisir un critère parmi les critères suivants :
1.3.3. Cliquez sur le bouton OK ou sur la touche ENTER de votre clavier pour lancer la recherche
1.3.4. La liste des résultats s’affiche :
Vous avez la possibilité de faire défiler et de cliquer sur un résultat de requête
1.3.5. Une fois que vous avez sélectionné un résultat, la notice associée à cette référence bibliographique s’affiche et vous pouvez la consulter :
1.3.6. Pour afficher ou masquer le détail des métadonnées de la référence appuyer sur + ou sur – :
1.4.1. Entrez une requête dans le ou les champs souhaités
1.4.2. Votre requête est guidée par la suggestion des termes déjà enregistrés dans la base de données (auto-complétion) :
1.4.3. Pour sélectionner un item appuyez sur « + » ; pour retirer un item de la recherche appuyez sur « - »
1.4.4. Pour combiner les termes, sélectionnez les opérateurs que vous souhaitez utiliser dans votre requête :
1.4.5. Pour lancer votre recherche appuyez sur « Rechercher »
Monographie
Dictionnaire / Encyclopédie
Collectif
Article
Revue / Périodique
Thèse
3.1. Vous pouvez la faire tourner dans tous les sens
3.2. Vous pouvez la zoomer et la dézoomer
3.3. Vous pouvez cliquer sur les mots-clés qu'elle présente
Le problème de l’Infini. Transfinis et alephs
Henri EYRAUDSous la direction de François LE LIONNAISDans Les Grands courants de la pensée mathématique - 1962
L’innéité du transfini
Arnaud DENJOYSous la direction de François LE LIONNAISDans Les Grands courants de la pensée mathématique - 1962
Cantorian set theory and limitation of size
Michael HALLETTÉditeur : Clarendon Press - 1984
C’est au mathématicien G. Cantor (1845-1918) que l’on doit l’arithmétique des ensembles infinis. Cet article présente l’aspect arithmétique – ou, si l’on préfère : numérique – de la Théorie des Ensembles, laquelle se retrouve aux sources de toutes les autres notions des mathématiques, celles notamment d’espace et de fonction. M.-M. V.
Reprenant l’analyse de l’ancien problème d’Achille et de la tortue, l’auteur montre comment y opère le fameux nombre omega de Cantor, et comment il offre, dans la suite des nombres, un relais précieux pour accorder l’intellectualisme des mathématiques à la réalité du mouvement. M.-M. V.
Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Fraenkel set theory. – This book studies Cantor's original development of set theory and its main subsequent development in the following thirty years. In his discussion of Cantor's work, Hallett addresses himself to three main questions. How did “set” become the fundamental notion in Cantor's theory ? What was Cantor's own conception of set ? What effect did Cantor's philosophical ideas have on the shape of his own theory and on what came later ? Part 2 of the book considers the extent to which modern set theory is properly to be seen as the axiomatic development (notably by Zermelo, Fraenkel and von Neumann) of Cantor's original conception. The universality of set construction can lead to paradoxes. Limitations of size as a basis for consistent elucidation of the set concept is an underlying theme of this work. Hallett's book makes an important contribution, both for the author's own insights and for his careful exposition of historical development, with detailed references and extensive quotation from the literature, including work by Dedekind, Frege, Russell, Jourdain, Miramanoff, Hessenberg, W.H. and G.C. Young, Hausdorff, Kuratowski, Bernays, Gödel, and more. – Part 1 : «The Cantorian origins of set theory»; – Part 2 : «The limitation of size argument and axiomatic set theory».